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Abstract 

In this study, the stability of a simply supported pipeline conveying fluid with different 

velocities and resting on viscoelastic foundation is investigated by using finite element 

analysis, and the critical fluid velocity with different parameters such as stiffness and 

viscous coefficients of foundation are obtained.  This structural system could be found in 

pipes conveying petrol, water, and sewage.  The foundation is simulated using the modified 

Winkler's model to introduce the effect of time dependent viscosity term. Some known 

results are confirmed and some new ones obtained. Two components of foundation, 

stiffness and viscosity, seemed to act on the critical flow velocity of the pipe in contrary 

trend. Where, increasing the foundation stiffness tended to increase the critical flow velocity 

in the pipe. While, increasing foundation viscosity attempted to decrease it. At some ranges 

of pipe length, the foundation viscosity effect seems to be more extreme. Increasing the 

fluid velocity leads to monotonic reduction in the system damping ratio. Two parameters, 

pipe length and fluid density which relate to the natural frequency of pipeline conveying 

fluid are studied in detail and the results indicate that the effect of Coriolis force on natural 

frequency is become more effective by increasing pipe length and fluid density besides 

increasing fluid flow velocity. 

Keywords: Finite element; Fluid- structural interaction; Viscoelastic foundation; Modified 

Winkler’s model; Pipes; Stability.
 

LIST OF SYMBOLS 

Symbol            Definition                                                                                                       Units 
A                     Cross-sectional flow area                                                                    m

2
 

b                     Width of the beam in contact with the base foundation                      m 

 ̂                    Foundation viscous matrix                                                                    - 

 ̂       Damping matrix caused by Coriolis force                                            - 

e                      Element                                                                                                 - 

E                     Modulus of elasticity of pipe                                                              N/m
2
 

 (x,t)               Intensity of reaction force of foundation                                           N/m
2
 

F                     Reaction force inside the pipe                                                            N 

g                        Acceleration constant                                                                         m/s
2 

H                    Characteristic matrix                                                                             - 

I                      Pipe second moment of area                                                              m4 

II                    Unity matrix                                                                                          - 

ko                     Foundation stiffness coefficient per unit length                                N/m
2
 

kv                     Foundation stiffness coefficient per unit area                                    N/m
3
 

 ̂                    Stiffness matrix of pipe                                                                         - 

 ̂                    Foundation stiffness matrix                                                                   - 

 ̂                    Stiffness matrix comes from flow around deflected pipe                      - 

L                     Length of the pipe                                                                                 m 



 

 

  Nawras H. M .     The Iraqi Journal For Mechanical And Material Engineering, Vol.19, No3,Sept.2019  

 

237 

 

l                      Element length of pipe                                                                       m 

M                    Fluid mass per unit length                                                                  kg/m 

m                    Pipe mass per unit length                                                                    kg/m 

                   Pipe mass matrix                                                                                     - 

                   Bending moment                                                                                  N/m 

Ni  Shape function                                                                                        - 

p                     Pressure inside the pipe                                                                       N/m
2
 

Q                       Shear force                                                                                           N 
                     Wall shear stress                                                                                  N/m

2
 

q                     Lateral displacement of pipe                                                                m 

                     Lateral velocity of pipe                                                                        m/s 

                     Lateral acceleration of pipe                                                                 m/s
2
 

S                      Pipe inner perimeter                                                                            m 

T                     Tension force in the pipe                                                                     N 

t                         Time                                                                                                     s 
U                         Fluid velocity relative to the pipe                                                       m/s 
x,W                     Cartesian axes                                                                                       - 

                      Foundation damping coefficient per unit length                              N.s/m
2
 

                    Foundation stiffness coefficient per unit area                                  N.s/m
3
 

                         Eigen values                                                                                           - 

                      Damping ratio                                                                                        - 

 
 

INTRODUCTION 

Piping systems are widely utilized to convey fluids in many industrial fields, ranging from 

chemical plants to biological engineering systems. Examples include fuel pipes in engine 

systems, heat transfer pipes in power generation plants, refrigerators, air-conditioners, heat 

exchangers, chemical plants piping, hydropower systems and so forth. Piping vibration 

problems are therefore very important in industry. The instability problem of flexible pipes 

conveying fluid provides a paradigm for the modeling and analysis of the instability 

mechanisms of fluid-structure interaction systems. The stability and dynamic characteristics 

are now well understood. The dynamics are known to be sensitively dependent on flow 

velocity and support/boundary conditions. In general, it has been established that an initially 

straight pipe that conveys a fluid with a relatively low speed is stable. In other words, each 

disturbance applied to that pipe causes a vibration that decreases with time. It has been also 

found that for fluid speed values higher than a certain value (the critical flow velocity) even a 

small disturbance could result in a system vibration that increases with time. In latter 

circumstances, therefore, the system equilibrium state is referred as unstable.  The first serious 

study of the dynamics of pipes conveying fluid is due to Bourrieres, [1939], who derived the 

correct equations of motion and carried its analysis remarkably far, reaching admirably 

accurate conclusions regarding stability, in particular concerning the cantilevered system. 

Major research on the regarding stability and vibration of flexible pipes conveying fluid 

started in the 1950s in relation to the design of pipelines conveying oil. Lottati and Kornecki 

,[1986], found that the critical flow velocity of a fluid conveying pipe on Winkler foundation 

is higher than the critical flow velocity of that pipe without foundation. In this manner, the 

Winkler foundation is proved to have a stabilizing effect on the pipe. Chen ,[1991], used the 

Vlasov foundation model to describe the vibration of a pipeline containing flowing fluid and 

supported on an elastic foundation. The critical flowing velocity of such pipe was solved 

analytically using interaction method .He concluded that elastic support would reduce that 

amplitude of the pipeline vibration. For pipes of a finite length, the dynamical behavior 
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depends strongly on the type of boundary conditions at both ends (Lee and Mote, [1997]).  

Elishakoff  and Impolonia, [2001] and Djondjorov , [2001], have studied the dynamic stability 

of cantilevered pipes on foundations of constant modulus that support only a part of the pipe 

span. They have found that such foundations could either destabilize or stabilize the pipe 

depending on the position and length of the foundations. Djondjorov, Vassilev and 

Dzhupanov, [2001], and Djondjorov, [2001], have examined cantilevered pipes on Winkler 

foundations whose modulus is a certain sixth-, second- or first-order polynomial. They have 

concluded that all such foundations stabilize the pipe. Païdoussis, [2004], studied numerically 

pinned-clamped and clamped-pinned pipes conveying fluid. He found that to predict the 

dynamical behavior of the clamped-pinned pipe, even 8 significant-figure accuracy was not 

good enough. The imaginary part of the complex Eigen frequency seemed to be negative, 

implying unstable behavior for any flow velocity greater than zero. Lumijärvi, [2006], studied 

the optimal design of cantilevered fluid-conveying pipes. The aim of his study was to 

maximize the critical flow speed of the fluid by means of additional masses, supporting 

springs or dampers along the length of the pipe. The optimization problem was formulated by 

modeling the pipe by finite element method, using Euler-Bernoulli beam elements. The 

locations of the additional masses, springs and dampers and the properties of these elements 

(mass, spring constant and damping constant) were chosen as design parameters. The 

maximization problem for the critical fluid flow speed was solved by the sequential quadratic 

programming technique. Huang et al, [2010], applied the eliminated element-Galerkin method 

to calculate the natural frequency with different boundary conditions based on typical 

transverse vibration model. Then the relationship between simplified natural frequency of the 

pipeline and that of Euler beam was discussed. In a given boundary condition, the four 

components (mass, stiffness, length and flow velocity) which relate to the natural frequency 

of pipeline conveying fluid were studied in detail and the results indicate that the effect of 

Coriolis force on natural frequency was inappreciable. Mahrenholtz, [2010] ,extended the 

Winkler's model to account the effect of time dependent in the simplest case to make it 

viscous. He applied the viscous model to solve a problem of rotating wheel sets on polymer 

rubber sheet. Good agreements between the proposed model and experimental data were 

obtained. Thomsen and Dahl, [2010], investigated the resonant vibrations of a fluid-

conveying pipe, with special consideration to axial shifts in vibration phase accompanying 

fluid flow and various imperfections. Small imperfections related to elastic and dissipative 

support conditions were specifically addressed, but the suggested approach was readily 

applicable to other kinds of imperfection, e.g. non-uniform stiffness or mass, non-proportional 

damping, weak nonlinearity, and flow pulsation. Rinaldi et al,[2010], investigated the effects 

of flow velocity on damping, stability, and frequency shift of microscale pipes containing 

internal fluid flow. The analysis was conducted within the context of classical continuum 

mechanics, and the effects of structural dissipation (including thermo elastic damping in 

hollow beams), boundary conditions, geometry, and flow velocity on vibrations were 

discussed. The study showed that flow-induced damping and frequency shifts in 

representative single-crystal silicon structures could exceed the typical specifications for 

resonant micro sensors. To the best of our knowledge, other studies on dynamic stability of 

pipes on variable elastic foundations are not reported in the literature. It can be found in 

Païdoussis, [1998]. 

     From the review of literature, it is found that the study of flow induced vibration in pipes 

conveying fluid mounted on viscoelastic foundation has not yet been explored so far. The aim 

of this is to clarify whether the critical flow velocity depends on the magnitude of the 

foundation stiffness, foundation damping, the pipe length, pipe thickness and fluid density for 

a simply supported pipe conveying fluid.   
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VISCOELASTIC EXTANSION OF WINKLER FUNCTION  

An analysis of the bending of beams on a viscoelastic foundation, if based on the Winkler 

model, is derived from the assumption that the foundation's reaction forces are proportional at 

every point to the deflection of the beam at that point. The differential equation of the elastic 

line is based on the assumption that a straight beam is supported along its entire length by a 

viscoelastic medium and subjected to vertical forces acting in the principal plane of the 

symmetrical cross section (see  Figure 1). Under these conditions, the beam will deflect, thus 

producing continuously distributed reaction forces in the supporting medium. One may make 

the fundamental assumption that the intensity (f) of the reaction forces at any point is 

proportional to the deflection of the beam W(x,t) at that point. The reaction forces are 

assumed to act vertically and in opposition to the deflection of the beam. Hence, where the 

deflection is directed downward (in a positive direction) the supporting medium will be 

compressed. However, where the deflection is negative, tension is produced; for the purposes 

of this research, the supporting medium is assumed able to take up such tensile forces. If a 

beam has a uniform cross section and b is its constant width, then a unit of deflection of this 

beam will cause reaction in the foundation; consequently, at a point where the deflection is 

W(x,t), the intensity of the distributed reaction, per unit length of the beam, will be 

(Mahrenholtz, [2010];  

                                                                                                            (1)                                                                                       

        Where ko and μ are the stiffness and damping (viscous) coefficients of foundation per 

unit length respectively. The assumption  (x,t) implies that the supporting medium is 

viscoelastic. Its material, then, acts in accordance with Kelvin-Voigt model. Its 

viscoelasticity, therefore, may be characterized by the force which, distributed over a unit 

area, will cause a deflection equal to that unit. The constant values of the supporting medium, 

and , are called the moduli of stiffness and viscous foundation respectively. Where, 

 

                                                                                                                                             (2) 

                                                                                                                                  (3) 

The units of the moduli  and  are  in (N/m
3
) and (N s/m

3
) respectively. While (b) is the 

width of the beam in contact with the base foundation. However, it should be remembered 

that ko and µ includes the effect of the width of the beam and will be numerically equal to only 

if the beam is of a unit width. 

 

DERIVATION OF GOVERNING DIFFERENTIAL EQUATION 

The detailed analysis of the dynamics of straight flexible pipes conveying fluid is described 

by Païdoussis, [1998] and Païdoussis, [2004]. In this section, the modeling and calculation 

method based on these papers are introduced. When a pipeline rests on a viscoelastic medium 

such as polymers, a model of the viscoelastic medium must be included in the governing 

differential equation. The physical system analyzed is shown in  Figure(2-a). Forces and 

moments acting on the fluid and pipe elements, respectively, are shown in  Figure (2-b and c). 

The pipe is considered to be slender, and its lateral motions, W(x,t) , to be small and of long 

wavelength compared to the diameter. The system consists of a uniform pipe of length (L) , 

pipe mass per unit length (m) , flexural rigidity   (EI ), conveying fluid of mass per unit length 

(M), flowing axially with velocity (U) , and mounted on viscoelastic foundation with stiffness 

(ko) and viscous damping (µ). The cross-sectional flow area is (A), inner perimeter is (S) and 
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the fluid pressure is (p).  Consider then elements δx of the fluid and the pipe, as shown in  

Figure(2-b and c). The fluid element of  Figure (2-b) is subjected to: (i) pressure forces, where 

the pressure p= p(x,t) because of frictional losses, p is measured above the ambient pressure, 

and t is the time; (ii) reaction forces of the pipe on the fluid normal to the fluid element, Fδx, 

and tangential to it, (  S δx), associated with the wall-shear stress ; (iii) gravity forces (M g 

δx) in the W- direction. Balancing the forces in W-direction of the fluid element while keeping in 

mind the small deflection approximation, yields 

                                                                                         (4) 

The sum of forces parallel to the pipes axis for constant flow velocity gives 

                                                                                                                           (5) 

Similarly, for pipe element of  Figure (2-c) one obtains 

                                                                                                                              (6) 

And the forces normal to the pipe axis for small deformation 

                                                                                (7) 

where 

                                                                                                              (8) 

From eq.(5) and eq.(6), the wall shear stress   is eliminated to result in 

                                                                                                                              (9) 

    The pipe end where x=L, the tension T in the pipe is zero and the fluid pressure is equal to 

ambient pressure, thus p=T=0 at x=L, 

                                                                                                                            (10)         

Combining all the above equations yields the following governing equation 

                                 (11) 

     The term ( ) represent a force component acting on the pipe because of pipe bending. 

The terms (  represent the force component acting on the pipe that comes from 

foundation stiffness and foundation damping respectively. The expression (  ) 

represent the force component acting on the pipe as a result of flow around a deflected pipe 

(curvature in pipe). The term ( ) is the inertial force associated with the Coriolis 

acceleration arising because the fluid flows with velocity U relative to the pipe. In addition, 

this expression is the so-called anti-symmetric whirligig “damping” item. Because of its 

effect, the fluid structural interaction model belongs to complex eigenvalue problem. While 
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the expression ( ) is force acting on the pipe because of inertia of the pipe and the 

fluid flowing through it. A remarkable feature of eq. (11) is the total absence of fluid-

frictional effects, which at first sight might appear to be an idealization. However, within the 

context of the other approximations implicit in this linearized equation, it may rigorously be 

demonstrated that fluid-frictional effects play no role in the dynamics of the system, a fact 

first shown by Benjamin, [1961 parts a and b]. 

 

FINITE ELEMENT DISCRETIZATION 

Eq. (11) is a binary partial differential equation of higher order with boundary problem. It is 

very difficult to get its analytical solution, while we can use finite element method to get its 

numerical solution. The equation of element deflection could have the form [Rao, 2004]: 

                                                                                                            (12)   

 

where  is the generalized coordinates. The shape functions Ni are equal to: 

 

                                                       

                      

      

                                                                                                                      (13)                                                  

                                                                                                           

Where l is the element length. 

 

The kinetic and potential energies of the pipe element can be expressed by  

 

                                                                (14) 

                     

                                                                     (15) 

 

Where each prime sign that appear above the shape function symbol, i.e. “N”, represent one-

time derivative with respect to x-coordinate. Thus, mass ( ) and stiffness ( ) matrices are 

equal to: 

 

                                                                       (16)     

                                                                  

 

                                                                                           (17) 

 

Over the length of elastic foundation, this adds the following term to the total potential 

energy: 
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                                                                               (18) 

 

We recognize the stiffness term in the above summation, 

                                                                                                                  (19) 

Thus, the foundation stiffness matrix equal to 

                                                                                  (20) 

The term (  ) has a potential energy that can be represented in terms of displacement 

shape function derived for the pipe as 

                                                        (21)   

 

The stiffness matrix that comes from flow around the deflected pipe is                                                          

 

                                                                                        (22) 

 

It is important to clear that stiffness matrix  leads to weaken the overall stiffness of the pipe 

system. The expression (  ) in eq. (11) has a dissipation energy as 

 

                                                                              (23) 

   

Leading to 

 

                                                                                                              (24) 

The foundation viscous matrix equal to 

                                                                             (25) 

While the expression ( ) represent the Coriolis force, which causes the fluid in the 

pipe to whip, can be represented by dissipation energy as 

                                           (26) 

This gives the unsymmetrical damping matrix 
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                                                                                     (27) 

 

DAMPED DYNAMIC EIGENVALUES 

 

To analyze the dynamic eigenvalues of damped structure it must be transfer the governing 

equation to the state-space coordinates. The standard equation of motion in the finite element 

form is 

 

                                                                                   (28) 

 

Where  and  . The substitution is, (Krodkiewski, 

[2008]: 

 

                                                                                                                                    (29) 

 

Resulting in the following set of equations 

 

                                                                                                                       (30) 

 

Where 

 

                                                                                                                                 (31) 

 

                                                                 (32) 

 

Where II is a unity matrix. 

 

   Therefore, we can obtain the natural frequencies and mode shapes by solving the 

characteristic equation of 

 

                                                                                                                       (33) 

 

   The solution of eigenvalue problem yields complex roots. The imaginary part of these roots 

represents the natural frequencies of damped system. The real part indicates the rate of decay 

of the free vibration. 

 

LOGARITHMIC DECREMENT 

A convenient way of determining the damping in a system is to measure the rate of decay of 

oscillation (the real part eigenvalue). The logarithmic decrement, δ, is the natural logarithm of 

the ratio of any two successive amplitudes in the same direction, where Y1, and Y2, are 

successive amplitudes, where (Beards, [1996])  

                                                                                                            (34) 
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RESULT AND DISCUSSION 

Figure (3-a) shows the relation between fluid velocity and the pipe frequency with various 

foundation stiffness of simply supported pipe mounted on viscoelastic foundation. As the 

foundation stiffness is increase, the natural frequency of the pipe is also increase. This 

behavior is taken place since the global stiffness of the system is increased. Furthermore, the 

relation between foundation stiffness and pipe frequency seems to be linear at constant fluid 

velocities as depicted in Figure (3-b). Figure (4) shows the effect of viscous damping 

coefficient of the foundation on the first natural frequency of the pipe system with different 

fluid velocities. As it is well known, the damped natural frequencies of damped system are 

smaller than it is for undamped one. Thus, an increase in the foundation viscous coefficient 

leads to reduce the dynamic properties of the pipe system. This behavior is not always true for 

damped system. Where the damped natural frequency of the lowest mode may be higher than 

the corresponding undamped frequency depending on the choice of damping matrix and the 

mode separation (Caughey and  O'Kelly, [1961]). Figure 5 presents the relation between pipe 

length and critical flowing velocities for different foundation properties. As well known for a 

pipe without foundation, increasing the pipe length leads to reduce the pipe stiffness and raise 

its mass thus decreasing the critical flowing velocity. This behavior is differing for a pipe with 

viscoelastic foundation. Where there is a reduction in the critical flowing velocities with 

increasing the pipe length then at some pipe length the critical velocity start to rise, then after 

reducing again and continue with compacted values. This convexity in the curve mainly 

caused by the foundation stiffness and this behavior is completely agree with the study that 

done by Chen [1991]. Moreover, when increasing foundation damping, the critical velocities 

exhibit more reduction in their values than it for small damping does. This behavior is caused 

by increasing the overall damping of the system that leading to decrease its damped natural 

frequency. Thus, we can say that, in viscoelastic foundation, damping induces destabilization 

effect, while foundation stiffness leads to stabilize the pipe.  It has thus found that the 

criterion for global instability as the length is increased becomes closely related to the local 

properties of the waves in the pipe (Doared and E. De Langre, [2002]). It is important to 

record that at some ranges of pipe length, the foundation viscosity effect seems extreme and 

obvious. Figure (6) shows the effect of fluid velocity on the system's damping ratio for two 

different foundation viscosities. The damping ratio will decrease monotonically with 

increasing fluid velocity. This event is mainly caused by decreasing the rate decay of pipe 

vibration. Figures (7-a and b) show the percentage errors in the predicted natural frequencies 

of the pipe system with neglecting the Coriolis component for different pipe lengths and fluid 

densities respectively. From these figures, a pipe with larger length and higher fluid density 

has the biggest frequency percentage error. Furthermore, increasing the flowing fluid velocity 

leads to increase the percentage error.  

CONCLUSIONS 

The effects of  a viscoelastic foundation on the stability of a fluid conveying pipe were 

analyzed by using the extension of Winkler foundation model. The problem was analyzed 

numerically using finite element method. Some interesting conclusions have been drawn, as 

follows: 

 

(1) The foundation stiffness leads to increase the fluid critical velocity , while foundation 

damping decreases it. 
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(2) There are ranged values of pipe length for each foundation properties that seems to be 

more affected by the foundation characteristics. 

(3) Coriolis component still play a major role in the dynamic behavior of pipe especially 

with larger length and heavier fluid. 

(4) The damping ratio of the system is decreased monotonically with increasing the fluid 

velocity.    
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Figure 1: Modified Winkler Foundation Model. 

 
Fig. 2: (a) Simply supported pipe on viscoelastic foundation (b) Forces on fluid element, and 

(c) Forces and moments on pipe element. 
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Fig. 3: Effect of foundation stiffness on the natural frequency of the pipe at different fluid 

velocities. Pipe length is (2 m), fluid density is (1000 kg/m
3
), pipe density is (8000 kg/m

3
), 

pipe thickness is (0.001 m) , outer diameter of the pipe is (0.01 m), elastic modulus of pipe is 

(207 GPa) and foundation damping coefficient , µv, is equal to (100 N.s/m
3
). (a) Label 

symbols are ● , kv=10 kN/m
3
; ♦, kv=20 kN/m

3
 ; +, kv=30 kN/m

3
 .(b) Label symbols are ● , 

U=50 m/s; ♦, U=40 m/s; +, U=0 m/s. 

 

 

Fig. 4: Effect of foundation viscous damping on the natural frequency of the pipe at different 

fluid velocities. Pipe length is (2 m), fluid density is (1000 kg/m
3
), pipe density is (8000 

kg/m
3
), pipe thickness is (0.001 m) , outer diameter of the pipe is (0.01 m), elastic modulus of 

pipe is (207 GPa) and foundation stiffness coefficient , kv, is equal to (20 kN /m
3
). Label 

symbols are ● , µv=1 kN.s/m
3
; ♦, µv =1.5 kN.s/m

3
 ; +, µv =2 kN.s/m

3
. 
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Fig. 5: Effect of pipe length on the critical fluid velocity for different mounting conditions. 

Pipe density is (8000 kg/m
3
) ,fluid density is (1000 kg/m

3
), outer diameter of the pipe is 

(0.01m) ), pipe thickness is (0.001 m), elastic modulus of pipe is (207 GPa). Label symbols 

are: dash line, kv=50 kN/m
3
 and µv =0; solid line, kv=50 kN/m

3
 and µv =500 N.s/m

3
; 

centerline, kv=50 kN/m
3
 and µv =1000 N.s/m

3
 ; , kv=30 kN/m

3
 and µv =0; , kv=30 kN/m

3
 and 

µv =500 N.s/m
3
; , kv=30 kN/m

3
 and µv =1000 N.s/m

3
; , kv=30 kN/m

3
 and µv =0; ●, kv=10 

kN/m
3
 and µv =500 N.s/m

3
; , kv=10 kN/m

3
 and µv =1000 N.s/m

3
. 

 

 
Fig. (6): Effect of fluid velocity on the system's damping ratio. Pipe density is (8000 kg/m

3
) 

,fluid density is (1000 kg/m
3
), outer diameter of the pipe is (0.01 m) ), pipe thickness is (0.001 

m), elastic modulus of pipe is (207 GPa), pipe length is (2 m). Label symbols are: , kv=30 

kN/m
3
 and µv =1000 N.s/m

3
; ●, kv=30 kN/m

3
 and µv =500 N.s/m

3
; , critical velocity. 
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Fig.7: Effect of whether considering Coriolis force in (a) different pipe lengths, Label 

symbols are ●, pipe length is 0.7 m ; ♦, pipe length is 1.3 m  ; +, pipe length is 2 m    (b) 

different fluid densities, Label symbols are ●, fluid density is 680 kg/m
3
 ; ♦, fluid density is 

1000 kg/m
3
 ; +, fluid density is 1260 kg/m

3
. The parameters are : pipe density is (8000 

kg/m
3
), outer diameter of the pipe is (0.01 m), elastic modulus of pipe is (207 GPa), 

foundation stiffness coefficient, kv, is (20 kN /m
3
) and foundation damping coefficient, µv, is 

(1000 N.s/m
3
). 
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